FALL 2019: MATH 558 QUIZ 9

Each question	is	worth	5	points
---------------	----	-------	---	--------

1. Based upon the examples from class, describe the smallest subfield of \mathbb{R} containing \mathbb{Q} and a root of $x^2 - 6$. You do **not** have to prove that your answer is correct.

Solution. $\mathbb{Q}(\sqrt{6}) := \{a + b\sqrt{6} \mid a, b \in \mathbb{Q}\}.$

2. True or False: The smallest subfield of \mathbb{R} containing a root of x^3-2 and \mathbb{Q} is of the form $\{a+b\sqrt[3]{2} \mid a,b\in\mathbb{Q}\}$. Briefly (in one sentence) justify your answer. Again no proof is not required.

Solution. False. The product $\sqrt[3]{3} \cdot \sqrt[3]{2}$ is not of the form $a + b\sqrt[3]{2}$.